Periodic Interpolation on Uniform Meshes

Franz-Jürgen Delvos
Lehrstuhl für Mathematik I, Universität Siegen, D-5900 Siegen, West Germany

Communicated by G. Meinardus
Received September 27, 1984; revised November 27, 1984

Introduction

In a recent paper Locher [3] has analyzed the interpolation problem produced by the functions

$$
g_{j}=g(\cdot-2 \pi j / n), \quad j \in \mathbb{Z}, n \in \mathbb{N}
$$

where g is a continuous real valued function on \mathbb{R} having period 2π. He showed that the interpolation problem generated by the function g and its translates g_{j} has a unique solution if and only if the discrete Fourier coefficients of g,

$$
c_{k, n}(g)=\frac{1}{n} \sum_{j=0}^{n-1} g\left(t_{j}\right) \exp \left(-i k t_{j}\right), \quad t_{j}=\frac{2 \pi j}{n}, \quad 0 \leqq k<n,
$$

do not vanish. If g is an odd periodic function, then $c_{0, n}(g)=0$. Therefore the method of interpolation by translation developed by Locher is not applicable to odd periodic functions g.

The present paper continues the investigations of [3] by weakening the condition $c_{0, n}(g) \neq 0$. We will develop a modification of the method of interpolation by translation. As a first application we obtain the Golomb construction of periodic polynomial splines of odd degree on uniform meshes [2]. Moreover we will use our method to derive explicit constructions of periodic polynomial splines of even degree on uniform meshes and of periodic polynomial midpoint splines on uniform meshes.

1. Interpolation by Translation

For the reader's convenience we briefly recall the method of interpolation by translation. With the aid of the 2π-periodic real valued continuous function g we define the functions

$$
B_{k}(t)=\sum_{j=0}^{n} g\left(t-t_{j}\right) \exp \left(i k t_{j}\right), \quad t \in \mathbb{R}, k \in \mathbb{Z} .
$$

Then we get for any $r \in \mathbb{Z}$

$$
\begin{aligned}
B_{k}\left(t_{r}\right) & =\sum_{i=0}^{n} g\left(t_{r}-t_{j}\right) \exp \left(i k t_{j}\right) \\
& =\sum_{j-r}^{r} g\left(t_{j}\right) \exp \left(i k t_{r}\right) \\
& =\exp \left(i k t_{r}\right)^{n} \sum_{i=0}^{1} g\left(t_{j}\right) \exp \left(-i k t_{j}\right),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
B_{k}\left(t_{r}\right)=\exp \left(i k t_{r}\right) B_{k}(0), \quad B_{k}(0)=n c_{k, n}(g), \quad k, r \in \mathbb{Z} . \tag{1.1}
\end{equation*}
$$

For $B_{k}(0) \neq 0$ we introduce the exponential interpolants

$$
\begin{equation*}
b_{k}(t)=B_{k}(t) / B_{k}(0), \quad t \in \mathbb{R} \tag{1,2}
\end{equation*}
$$

which satisfy the interpolation conditions

$$
\begin{equation*}
b_{k}\left(t_{r}\right)=\exp \left(i k t_{r}\right), \quad r \in \mathbb{Z} \tag{1.3}
\end{equation*}
$$

It follows from the definition of b_{k} that

$$
\begin{equation*}
b_{k} \in \operatorname{lin}\left\{g_{0}, g_{1}, \ldots, g_{n} \quad 1\right\}=: V_{n} \tag{1.4}
\end{equation*}
$$

V_{n} is the linear space of interpolating functions for the method of interpolation by translation. V_{n} is translation invariant with respect to the translation $t_{1}=2 \pi / n$, i.e., we have

$$
\begin{equation*}
f\left(\cdot-t_{1}\right) \in V_{n}, \quad f \in V_{n} . \tag{1.5}
\end{equation*}
$$

Theorem 1 [3]. Assume $B_{k}(0) \neq 0$ for $k=0,1, \ldots, n-1$. Then

$$
\begin{equation*}
L(t)=\frac{1}{n} \sum_{j=0}^{n} b_{j}(t), \quad t \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

is the unique Lagrange function in V_{n} satisfying

$$
\begin{equation*}
L\left(t_{k}\right)=\delta_{0, k}, \quad k=0, \ldots, n-1 \tag{1.7}
\end{equation*}
$$

Moreover, for any 2π-periodic continuous function f there is a unique function $S_{n}(f) \in V_{n}$ that interpolates f at the mesh points $t_{j}, j \in \mathbb{Z}$.

Proof. It follows from the definition of b_{j} that $L \in V_{n}$. Taking into account (1.3) we obtain for $k=0, \ldots, n-1$,

$$
L\left(t_{k}\right)=\frac{1}{n} \sum_{j=0}^{n} b_{j}\left(t_{k}\right)=\frac{1}{n} \sum_{j-0}^{n-1} \exp \left(i j t_{k}\right)=\delta_{0, k}
$$

whence (1.7) follows. The translation invariance of V_{n} implies that

$$
\begin{equation*}
S_{n}(f)=\sum_{k=0}^{n} f\left(t_{k}\right) L\left(\cdot-t_{k}\right) \tag{1.8}
\end{equation*}
$$

is the unique function in V_{n} satisfying

$$
\begin{equation*}
S_{n}(f)\left(t_{k}\right)=f\left(t_{k}\right), \quad k \in \mathbb{Z} \tag{1.9}
\end{equation*}
$$

This completes the proof of Theorem 1 .
In the sequel we consider some earlier developments on interpolation by translation. Let the generating function g be the sum of an absolutely convergent trigonometric series:

$$
\begin{equation*}
g(t)=\sum_{m=\alpha_{\alpha}}^{\alpha} c_{m}(g) \exp (i m t), \quad t \in \mathbb{R} . \tag{1.10}
\end{equation*}
$$

Prager [5] assumed

$$
\begin{equation*}
c_{m}(g)>0, \quad \sum_{m=x_{x}}^{\infty} c_{m}(g)<\infty \tag{1.11}
\end{equation*}
$$

and he established Theorem 1 for this special case. As is well known

$$
\begin{equation*}
c_{k, n}(g)=\sum_{r=\infty}^{\infty} c_{k+n}(g) . \tag{1.12}
\end{equation*}
$$

Thus, the relations (1.11) and (1.12) imply

$$
\begin{equation*}
B_{k}(0) \neq 0, \quad k=0, \ldots, n-1 \tag{1.13}
\end{equation*}
$$

in view of (1.1) whence Theorem 1 is applicable. The conditions (1.11) were generalized by Locher [3].

Spline interpolation is associated with the Bernoulli functions $P_{q}, q \in \mathbb{N}$, which are given by

$$
\begin{equation*}
P_{q}(t)=\sum_{m \neq 0}(i m) \quad{ }^{q} \exp (i m t)=\sum_{m=1}^{\infty} \frac{2}{m^{4}} \cos (m t-\pi q / 2) \tag{1.14}
\end{equation*}
$$

It is well known that $P_{q}(t)$ is a polynomial function of exact degree q for $0<t<2 \pi$ which may be computed recursively:

$$
\begin{align*}
P_{1}(t) & =\pi-t, \quad P_{q+1}^{\prime}(t)=P_{q}(t), \quad \int_{0}^{2 \pi} P_{q+1}(t) d t=0, \\
0 & <t<2 \pi, \quad q \in \mathbb{N} . \tag{1.15}
\end{align*}
$$

Using (1.15) we can generate all higher polynomials:

$$
\begin{align*}
& P_{2}(t)=-(\pi-t)^{2} / 2!+\pi^{2} / 6 \\
& P_{3}(t)=(\pi-t)^{3} / 3!-(\pi-t) \pi^{2} / 6 \tag{1.16}\\
& P_{4}(t)=-(\pi-t)^{4} / 4!+(\pi-t)^{2}\left(\pi^{2} / 6\right) / 2!-\pi^{4} 7 / 360 .
\end{align*}
$$

It follows from (1.14) and (1.12) that

$$
\begin{equation*}
c_{k, n}\left(P_{2 r}\right)=B_{k}(0) / n \neq 0, \quad k=0, \ldots, n-1, r \in \mathbb{N} . \tag{1.17}
\end{equation*}
$$

The interpolating functions generated by $P_{2 r}$ are the Bernoulli monosplines introduced in [1].

It follows from (1.6), (1.2), and (1.1) that the periodic Lagrange function L has the alternative representation

$$
\begin{equation*}
L(t)=\sum_{k=0}^{n} e_{k} g\left(t-t_{k}\right), \quad e_{k}=\frac{1}{n} \sum_{i=0}^{n} \exp \left(i j t_{k}\right) / B_{k}(0) \tag{1.18}
\end{equation*}
$$

(see also [3]). Since g is assumed to be real valued we obtain for $n=2 s+1$ the real representation of e_{k},

$$
\begin{align*}
& B_{j}^{\prime}=g(0)+\sum_{r=1}^{s}\left(g\left(t_{r}\right)+g\left(t_{n},\right)\right) \cos \left(j t_{r}\right) \\
& B_{j}^{\prime \prime}=\sum_{r=1}^{s}\left(-g\left(t_{r}\right)+g\left(t_{n-r}\right)\right) \sin \left(j t_{r}\right) \tag{1.19}\\
& e_{k}=\frac{1}{n}\left(1 / B_{0}^{\prime}+\sum_{j=1}^{s} 2\left(\cos \left(j t_{k}\right) B_{j}^{\prime}+\sin \left(j t_{k}\right) B_{j}^{\prime}\right) /\left(B_{j}^{\prime 2}+B_{j}^{\prime \prime 2}\right)\right)
\end{align*}
$$

2. An Extension of Golomb's Method

It is the main objective of this paper to derive a modified method of interpolation by translation which is applicable to functions $g \in C_{2 \pi}$ which

Fig. 1. The Lagrange function for quadratic Bernoulli splines with $n=5$.

Fig. 2. The Lagrange function for quartic Bernoulli splines with $n=5$.
merely satisfy $B_{k}(0) \neq 0,0<k<n$. The basic idea of our method is to replace the function space

$$
V_{n}=\operatorname{lin}\left\{g\left(\cdot-t_{0}\right), g\left(\cdot-t_{1}\right), \ldots, g\left(\cdot-t_{n-1}\right)\right\}
$$

by the "first order difference" space

$$
\begin{equation*}
V_{n}^{1}=\operatorname{lin}\left\{1, g\left(\cdot-t_{1}\right)-g, \ldots, g\left(\cdot-t_{n-1}\right)-g\right\} \tag{2.1}
\end{equation*}
$$

Theorem 2. Assume that the 2π-periodic continuous real valued function g satisfies $B_{k}(0) \neq 0,0<k<n$. Then

$$
\begin{equation*}
l(t)=\frac{1}{n}\left(1+\sum_{k=1}^{n-1} b_{k}(t)\right), \quad t \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

is the unique periodic Lagrange function in V_{n}^{1} satisfying

$$
\begin{equation*}
l\left(t_{k}\right)=\delta_{0, k}, \quad 0 \leqq k<n \tag{2.3}
\end{equation*}
$$

Moreover, for any $f \in C_{2 \pi}$ there is unique function $Q_{n}(f) \in V_{n}^{1}$ that interpolates f at the mesh points $t_{t}, j \in \mathbb{Z}$.

Proof. It follows from the definition of the functions $b_{i}, j=1, \ldots, n-1$, that l has the representation

$$
\begin{align*}
l & =\frac{1}{n}\left(1+\sum_{j=0}^{n-1} d_{j} g\left(\cdot-t_{j}\right)\right), \tag{2.4}\\
d_{j} & =\sum_{k=1}^{n} \exp \left(i k t_{j}\right) / B_{k}(0), \quad B_{k}(0)=\sum_{r=0}^{n-1} g\left(t_{r}\right) \exp \left(-i k t_{r}\right) .
\end{align*}
$$

Fig. 3. The Lagrange function for analytic Poission splines associated with $g(t)=\left(1-p^{2}\right)$ $\left(1+p^{2}-2 p \cos (t)\right)(p=1 / 2, n=5)$ (see [3]).

Fig. 4. The Lagrange spline of $\operatorname{Sp}(2.5)$.

It is readily established that

$$
\begin{equation*}
\sum_{i-0}^{1} d_{i}=0 \tag{2.5}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
l=\frac{1}{n}\left(1+\sum_{i-1}^{n} d_{i}\left(g\left(\cdot-t_{j}\right)-g\right)\right) \in V_{n}^{1} . \tag{2.6}
\end{equation*}
$$

To prove (2.3) we proceed as in the proof of Theorem 1:

$$
l\left(t_{k}\right)=\frac{1}{n}\left(1+\sum_{i=1}^{n-1} b_{i}\left(t_{k}\right)\right)=\frac{1}{n} \sum_{j=0}^{n} \exp \left(i j t_{k}\right)=\delta_{0, k}, \quad 0 \leqq k<n .
$$

Thus, l is a periodic Lagrange function with respect to the mesh points t_{j}, $j \in \mathbb{Z}$.

To complete the proof of Theorem 1 we first note that V_{n}^{1} is translation invariant with respect to the translation $t_{1}=2 \pi / n$, i.e., we have

$$
\begin{equation*}
h\left(\cdot-t_{1}\right) \in V_{n}^{1}, \quad h \in V_{n}^{1} \tag{2.7}
\end{equation*}
$$

which follows from

$$
\begin{equation*}
g\left(\cdot-t_{j}-t_{1}\right)-g\left(\cdot-t_{1}\right)=\left(g\left(\cdot-t_{j+1}\right)-g\right)-\left(g\left(\cdot-t_{1}\right)-g\right), \quad j \in \mathbb{Z} . \tag{2.8}
\end{equation*}
$$

Fig. 5. The Lagrange spline of $\operatorname{Sp}(4,5)$.

Fig. 6. The Lagrange function for conjugate Poisson splines associated with $g(t)==p \sin (t) /$ $\left(1+p^{2}-2 p \cos (\rho)\right)$ for $p=1 / 2$ and $n=5$.

Thus, we obtain

$$
\begin{equation*}
Q_{n}(f)=\sum_{k=0}^{n-1} f\left(t_{k}\right) l\left(\cdot-t_{k}\right) \tag{2.9}
\end{equation*}
$$

which completes the proof of Theorem 2.
Remark. As in Section 1 we have for $n=2 s+1$,

$$
\begin{align*}
& B_{j}^{\prime}=g(0)+\sum_{r=1}^{s}\left(g\left(t_{r}\right)+g\left(t_{n-r}\right)\right) \cos \left(j t_{r}\right) \\
& B_{j}^{\prime \prime}=\sum_{r=1}^{s}\left(-g\left(t_{r}\right)+g\left(t_{n-r}\right)\right) \sin \left(j t_{r}\right) \tag{2.10}\\
& d_{k}=2 \sum_{j=1}^{s}\left(\cos \left(j t_{k}\right) B_{j}^{\prime}+\sin \left(j t_{k}\right) B_{j}^{\prime \prime}\right) /\left(B_{j}^{\prime 2}+B_{j}^{\prime \prime 2}\right)
\end{align*}
$$

since g is assumed to be real valued.
We will use Theorem 2 to prove interpolation theorems for periodic polynomial splines on uniform meshes. Assume $g=P_{q}$ with $q \geqq 2$. It was proved by Meinardus [4] that the functions

$$
1, P_{4}\left(\cdot-t_{1}\right)-P_{q}, \ldots, P_{4}\left(\cdot-t_{n-1}\right)-P_{q}
$$

Fig. 7. The Lagrange midpoint spline of $\mathrm{Sp}^{*}(2,5)$.

Fig. 8. The Lagrange midpoint spline of $\operatorname{Sp}^{*}(4,5)$.
form a basis of the space $\operatorname{Sp}(q-1, n)$ of periodic polynomial splines of degree $q-1$ with spline knots $t_{j}, j \in \mathbb{Z}$, i.e., we have

$$
\begin{equation*}
\operatorname{Sp}(q-1, n)=V_{n}^{1}=: V_{n}^{1}\left(P_{q}\right) . \tag{2.11}
\end{equation*}
$$

As a first application of Theorem 2 we get Golomb's construction of periodic polynomial splines of degree $2 r-1$.

Corollary 2.1 [2]. Suppose that $g=P_{2 r}$. Then the function $Q_{n}(f)$ defined by (2.9) is the unique periodic polynomial spline function of degree $2 r-1$ with spline knots $t_{j}, j \in \mathbb{Z}$, that interpolates f at the points $t_{j}, j \in \mathbb{Z}$.

Proof. For $k=1, \ldots, n-1$ we get

$$
\begin{aligned}
B_{k}(0) & =\sum_{u=0}^{n} \sum_{m \neq 0}(i m)^{2 r} \exp \left(i m t_{u}-i k t_{u}\right) \\
& =\sum_{m \neq 0}(i m)^{2 r} \sum_{u=0}^{n} \exp \left(i t_{u}(m-k)\right) \\
& =\sum_{j=0}^{\infty}(k+n j)^{2 r}(-1)^{r} n,
\end{aligned}
$$

i.e., we have $B_{k}(0) \neq 0, k=1, \ldots, n-1$. Thus, an application of Theorem 2 completes the proof of Corollary 2.1.

Corollary 2.2. Assume $g=P_{2 r+1}$ and $n=2 s+1$. Then $Q_{n}(f)$ is the unique periodic polynomial spline of degree $2 r$ with knots $t_{j}, j \in \mathbb{Z}$, that interpolates f at the points $t_{j}, j \in \mathbb{Z}$.

Fig. 9. The Lagrange function for midpoint conjugate Poisson splines with $p=\frac{1}{2}$ and $n=5$.

Proof. For $k=1, \ldots, n-1$ we have

$$
\begin{aligned}
B_{k}(0) & =\sum_{u=0}^{n-1} \sum_{m \neq 0}(i m)^{-(2 r+1)} \exp \left(i m t_{u}-i k t_{u}\right) \\
& =\sum_{j=-\infty}^{\infty}(k+n j)^{(2 r+1)}(-1)^{r} n / i \\
& =-i(-1)^{r} n \sum_{j=0}^{\infty}\left((k+n j)^{-(2 r+1)}-((n-k)+n j)^{-(2 r+1)}\right),
\end{aligned}
$$

i.e., we have $B_{k}(0) \neq 0$ for $0<k<n, 2 k \neq n$. Since $P_{2 r+1}$ is odd it follows that $B_{0}(0)=0$ and Theorem 1 is not applicable.

Let $z_{j}=t_{j}+\pi / n, j \in \mathbb{Z}$. It follows from the basis theorem of Meinardus [4] that the functions

$$
1, P_{q}\left(\cdot-z_{1}\right)-P_{q}, \ldots, P_{q}\left(\cdot-z_{n-1}\right)-P_{q}
$$

form a basis of the space $\operatorname{Sp}^{*}(q-1, n)$ of periodic polynomial midpoint splines of degree $q-1$ with spline knots $z_{j}, j \in \mathbb{Z}$. Thus, we have for $g=P_{4}(\cdot-\pi / n)$

$$
\begin{equation*}
\mathrm{Sp}^{*}(q-1, n)=V_{n}^{1}=: V_{n}^{1}\left(P_{4}(\cdot-\pi / n)\right) . \tag{2.12}
\end{equation*}
$$

Corollary 2.3. Suppose $g=P_{2 r+1}(\cdot-\pi / n)$. Then the function $Q_{n}(f)$ given by (2.9) is the unique periodic polynomial midpoint spline of degree $2 r$ with knots $z_{j}, j \in \mathbb{Z}$, that interpolates f at the points $t_{j}, j \in \mathbb{Z}$.

Proof. Taking into account (1.14) we obtain for $k=1, \ldots, n-1$,

$$
\begin{aligned}
B_{k}(0)= & \sum_{m \neq 0}(i m)^{-(2 r+1)} \sum_{u=0}^{n-1} \exp \left(i m\left(t_{u}-\pi / n\right)-i k t_{u}\right) \\
= & \sum_{m \neq 0}\left((i m)^{-(2 r+1)} \exp (-i \pi m / n) \sum_{u=0}^{n-1} \exp \left(i t_{u}(m-k)\right)\right. \\
= & -i(-1)^{r} n \exp (-i \pi k / n) \sum_{j=-\infty}^{\infty}(-1)^{j}(k+n j)^{-(2 r+1)} \\
= & -i(-1)^{r} n \exp (-i \pi k / n)\left(\sum_{j=0}^{\infty}(-1)^{j}(k+n j)^{-(2 r+1)}\right. \\
& \left.\quad+\sum_{j=1}^{\infty}(-1)^{j}(k-n j)^{-(2 r+1)}\right) \\
= & -i(-1)^{r} n \exp (-i \pi k / n) \sum_{j=0}^{\infty}(-1)^{j}\left((k+n j)^{-2 r-1}\right. \\
& \left.+(n-k+n j)^{-2 r-1}\right),
\end{aligned}
$$

i.e., we have $B_{k}(0) \neq 0$ for $k=1, \ldots, n-1$ in view of

$$
\left|B_{k}(0)\right|>k^{2 r-1}+(n-k)^{2 r} \quad 1-(k+n)^{-2 r} \quad 1-(n-k+n)^{-2 r} \text { 1. }
$$

Again an application of Theorem 2 completes the proof of Corollary 2.3. Since $P_{2 r+1}(-t)=-P_{2 r+1}(t), z_{n \quad 1} \quad j=2 \pi-z_{j}$, it follows that

$$
B_{0}(0)=-\sum_{j=0}^{\prime \prime} P_{2 r+1}\left(z_{j}\right)=0
$$

i.e., Theorem 1 is not applicable to the function $P_{2 r+1}(\cdot-\pi / n)$.

Remark. For the functions $g=P_{q}(\cdot-a), a=0, \pi / n$, Locher's method works with the space V_{n} of translates of g which is a space of periodic polynomial splines of degree q with knots of multiplicity 2 . In the extension of Golomb's method the set V_{n}^{1} of interpolants is a linear space of periodic polynomial splines of degree $q-1$ with knots of multiplicity 1 . For this purpose the local degree of g is diminished by one and put together to $q-1$ by taking the differences from the translates, while the order of differentiability remains $q-2$ so that polynomial degree and this order fit together by their own- furnished by Golomb by the special side condition [2] and (2.11) only.

References

1. F.-J. Delvos and W. Schempp, On optimal periodic interpolation, J. Math. Anal. Appl. 52 (1975), 553-560.
2. M. Golomb, Approximation by periodic spline interpolants on uniform meshes, J. Approx. Theory 1 (1968), $26-65$.
3. F. Locher, Interpolation on uniform meshes by the translates of one function and related attenuation factors, Math. Comp. 37 (1981), 403-416.
4. G. Meinardos, Periodische Splinefunktionen, in "Spline functions, Karlsruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 177-199, Lecture Notes in Math. Vol. 501, Springer-Verlag, Berlin, 1976.
5. M. Práger, Universally optimal approximation of functionals, Apl. Mat. 24 (1979), 406416.
